
Chapter 5

Review of Series Solutions,
System DE. and Stability

5.1 Solutions about Ordinary Points

5.1.1 Power Series Solution

Series solution method is useful when the coefficients are not constant or when
methods introduced in the previous sections does not work. For example, we
have a Bessel equation

x2y′′ + xy′ + (x2 − ν2)y = 0, (ν ≥ 0)

or Legendre equation

(1− x2)y′′ − 2xy′ + α(α+ 1)y = 0, (α ≥ 0).

Example 5.1.1. Find expansion of 1
x2−2x+5 at x = 1. What is radius of conver-

gence ?

Sol. For
∣

∣

x−1
2

∣

∣ < 1

1

x2 − 2x+ 5
=

1

(x− 1)2 + 4
=

1

4

1

1 +
(

x−1
2

)2

=
1

4

(

1−
(

x− 1

2

)2

+

(

x− 1

2

)4

+ · · ·+ (−1)n
(

x− 1

2

)2n

+ · · ·
)

.

Hence radius of convergence is 2.

1
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Example 5.1.2. Solve (x2 + 1)y′′ + xy′ − y = 0.
Solution. This equation has a singularity at x = ±i and power series will

converge for |x| < 1 only. With y(x) =
∞
∑

n=0
cnx

n we find

(x2 + 1)
∞
∑

n=2

n(n− 1)cnx
n−2 + x

∞
∑

n=1

ncnx
n−1 −

∞
∑

n=0

cnx
n

=

∞
∑

n=2

n(n− 1)cnx
n +

∞
∑

n=2

n(n− 1)cnx
n−2 +

∞
∑

n=1

ncnx
n −

∞
∑

n=0

cnx
n

= −c0 +

∞
∑

k=2

k(k − 1)ckx
k +

∞
∑

k=0

(k + 2)(k + 1)ck+2x
k +

∞
∑

k=1

[kck − ck]x
k

= 2c2 − c0 + 6c3x+
∞
∑

k=2

[k(k − 1)ck + (k + 2)(k + 1)ck+2 + kck − ck]x
k

= 2c2 − c0 + 6c3x+
∞
∑

k=2

[(k + 1)(k − 1)ck + (k + 2)(k + 1)ck+2]x
k = 0.

Comparing the coefficients, we see 2c2 − c0 = 0, c3 = 0 and

(k + 1)(k − 1)ck + (k + 2)(k + 1)ck+2, k = 2, 3, · · · . (5.1)

Thus,

c2 =
1

2
c0, c3 = 0

ck+2 =
1− k

k + 2
ck, k = 2, 3, · · ·

Hence

c4 = −1

4
c2 = − 1

2 · 4c0 = − 1

22 · 2!c0

c5 = −2

5
c3 = 0

c6 = −3

6
c4 =

3

2 · 2 · 4 · 6c0 =
1 · 3
23 · 3!c0

c7 = −4

7
c5 = 0

= · · · .
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Note that there is no conditions or relation on c1(free). So y = c1x is a solution.
Grouping terms of c0 and c1 we have the solution y = c0y1 + c1y2:

y1 = 1 +
1

2
x2 +

∞
∑

n=2

(−1)n−1 1 · 3 · 5 · · · (2n− 3)

2nn!
x2n, y2 = x, for |x| < 1.

5.2 Solution near Singular Points

Definition 5.2.1.

= (x− x0)
2y′′ + (x− x0)p(x)y

′ + q(x)y = 0, (5.2)

where p(x) and q(x) are analytic.

Frobenius Method

Theorem 5.2.2 (Frobenius(1849-1917) Theorem). If x0 is a regular singular
point, then there exists at least one nonzero solution of the form

y(x) = (x− x0)
r

∞
∑

n=0

cn(x− x0)
n, a0 6= 0, (5.3)

where r(not nec. an integer) is a constant to be determined.

Example 5.2.3. [Distinct roots, r1 − r2 not integer] Find a series solution
of 2xy′′ + y′ + xy = 0.

y = xr
∞
∑

n=0

cnx
n =

∞
∑

n=0

cnx
n+r (5.4)

y′ =
∞
∑

n=0

(n + r)cnx
n+r−1

= [rc0x
r−1 + (r + 1)c1x

r + · · ·+ (n+ r)cnx
n+r−1 + · · · ]

= xr−1[rc0 + (r + 1)c1x+ · · ·+ (n+ r)cnx
n + · · · ] (5.5)

y′′ =
∞
∑

n=0

(n + r)(n+ r − 1)cnx
n+r−2

= [r(r − 1)c0x
r−2 + (r + 1)rc1x

r−1 + · · · + (n+ r)(n+ r − 1)cnx
n+r−2 + · · · ]

= xr−2[r(r − 1)c0 + (r + 1)rc1x+ · · · + (n + r)(n+ r − 1)cnx
n + · · · ] (5.6)
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Subst. into the differential equation 2xy′′ + y′ + xy = 0,

2xr−1[r(r − 1)c0 + (r + 1)rc1x+ (r + 2)(r + 1)c2x
2 + · · ·+ (n+ r)(n+ r − 1)cnx

n + · · · ]
+xr−1[rc0 + (r + 1)c1x+ (r + 2)c2x

2 + · · ·+ (n+ r)cnx
n + · · · ]

+xr+1[c0 + c1x+ · · ·+ cnx
n + · · · ] = 0.

Compare coefficients of xr−1, xr and xr+1, we get :

[2r(r − 1) + r]c0 = 0 (5.7)

[2(r + 1)r + (r + 1)]c1 = 0 (5.8)

2(n + r)(n + r − 1)cn + (n+ r)cn + cn−2 = 0, n ≥ 2. (5.9)

So we obtain r = 0, 12 . The equation F (r) = r(2r − 1) = 0 is called the
indicial equation. In this case we have

Distinct roots, r1 − r2 not integer

• Coeff. xr: [2(r + 1)r + (r + 1)]c1 = (2r + 1)(r + 1)c1 = 0 ⇒ c1 = 0.

• Coeff. xn+r−1: 2(n + r)(n+ r − 1)cn + (n + r)cn + cn−2 = 0. (n ≥ 2)

Hence

cn =
−cn−2

(n + r)(2n + 2r − 1)
, n ≥ 2.

c1 = c3 = c5 = · · · = 0.
Two solutions are as follows:

Now we present more general case: Let p(x) =
∞
∑

n=0
anx

n, q(x) =
∞
∑

n=0
bnx

n and

consider
x2y′′ + xp(x)y′ + q(x)y = 0. (5.10)

The derivatives of y are

y′ =
∞
∑

n=0

(n+ r)cnx
n+r−1

= [rc0x
r−1 + (r + 1)c1x

r + · · · + (n+ r)cnx
n+r−1 + · · · ]

= xr−1[rc0 + (r + 1)c1x+ · · · ]

y′′ =
∞
∑

n=0

(n+ r)(n+ r − 1)cnx
n+r−2

= [r(r − 1)c0x
r−2 + (r + 1)rc1x

r−1 + · · ·+ (n+ r)(n+ r − 1)cnx
n+r−2 + · · · ]

= xr−2[r(r − 1)c0 + (r + 1)rc1x+ · · · ].
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Subst. these into (5.2) together with p(x), q(x), and divide by xr to obtain

[r(r − 1)c0 + (r + 1)rc1x+ · · · ] + [a0 + a1x+ · · · ][rc0 + (r + 1)c1x+ · · · ]
+[b0 + b1x+ · · · ][c0 + c1x+ · · · ] = 0.

Comparing coefficient, we see

[r(r − 1) + a0r + b0]c0 = 0.

Here c0 is arb. Hence we obtain the following indicial equation.

F (r) := r(r − 1) + a0r + b0 = 0

Denote the zeros by r1, r2. Coefficients of xr+n :

F (r + n)cn +
n
∑

k=0

ck[(r + k)an−k + bn−k] = 0, n ≥ 1 (5.11)

Example 5.2.4. [multiple roots, or r1 − r2 is an integer] The solution is
complicated.

Theorem 5.2.5. Assume the coefficients of the DE.

x2y′′ + xp(x)y′ + q(x)y = 0 (5.12)

have power series

p(x) =
∞
∑

n=0

anx
n, q(x) =

∞
∑

n=0

bnx
n

convergent for |x| < ρ and the roots of indical equation are r1, r2(r1 ≥ r2). Then
the equation (5.12) has the following type of solution which converges on |x| < ρ.

(1) r1, r2 are distinct and r1 − r2 not integer : There exists always two linearly
independent solution of the form

y1(x) = |x|r1(1 + c1(r1)x+ c2(r1)x
2 + · · · )

Here cn(r1) is given by (5.11) with (c0 = 1, r = r1).

y2(x) = |x|r2(1 + c1(r2)x+ c2(r2)x
2 + · · · )

Here cn(r2) is given by (5.11) with (c0 = 1, r = r2).
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(2) r1 − r2 = N integer:

y1(x) = |x|r1(c0 + c1x+ · · · )
y2(x) = Cy1(x) ln x+ |x|r2(b0 + b1x+ b2x

2 + · · · ).
Here c0, c1, b0, b1, · · · are given by (5.12) and C may be zero. If C = 0 then
the two solutions are

y1(x) = |x|r1(c0 + c1x+ · · · ), y2(x) = |x|r2(b0 + b1x+ b2x
2 + · · · ).

(3) r1 = r2 : The following type always solution exists.

y1(x) = |x|r(c0 + c1x+ · · · )
y2(x) = y1(x) lnx+ |x|r(b0 + b1x+ b2x

2 + · · · )
This is a special case of (2) with C = 1 (the logarithmic term always exists!).

How to find the second solution?

With one solution y1(x) known in the above, you may try y2(x) = u(x)y1(x) for
the second solution. You will get

y2(x) = y1(x)

∫

e−
∫
x P (t)dt

y21(x)
dx. (5.13)

5.3 Special Functions

5.3.1 Bessel Functions

The following DE is called the Bessel’s equation of order ν.

x2y′′ + xy′ + (x2 − ν2)y = 0, ν ≥ 0 (5.14)

This equation arises in the study of heat equation or wave equation in cylindrical

coordinates. Substituting y = xr
∞
∑

n=0
cnx

n into the left of (5.14)

∞
∑

n=0

(n+ r)(n+ r − 1)cnx
n+r +

∞
∑

n=0

(n+ r)cnx
n+r +

∞
∑

n=0

cnx
n+r+2 − ν2

∞
∑

n=0

cnx
n+r

=

∞
∑

n=0

{

(n+ r)(n+ r − 1)cn + (n+ r)cn − ν2cn
}

xn+r +

∞
∑

n=2

cn−2x
n+r

=
{

r(r − 1) + r − ν2
}

c0x
r +

{

(r + 1)r + (r + 1)− ν2
}

c1x
r+1

+

∞
∑

n=2

{

[(n+ r)(n+ r − 1) + (n+ r)− ν2]cn + cn−2

}

xn+r
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Compare coefficients of lowest degree terms,

xr : (r2 − ν2)c0 = 0
xr+1 : [(r + 1)2 − ν2]c1 = 0
xr+n : [(n+ r)2 − ν2]cn + cn−2 = 0.

Indicial equation is F (r) = r2 − ν2 = 0, so

r = ±ν.

From the coeff of xr+1 (choose ν ≥ 0 first)

((±ν + 1)2 − ν2)c1 = (2ν + 1)c1 = 0, (5.15)

we get c1 = 0. From the coeff of xr+n we get

[(n+ r)2 − ν2]cn + cn−2 = 0. (5.16)

Hence c1 = c3 = c5 = · · · = 0. First consider r = ν. It suffices to consider even
terms, so let n = 2k. Then from (5.16) we see

c2k = − c2k−2

22k(k + ν)
.

Hence
c2 = − c0

221 · (ν + 1)

c4 = − c2
22 · 2(ν + 2)

=
c0

24(1 · 2)(ν + 1)(ν + 2)

c6 = − c2
22 · 3(ν + 3)

=
−c0

26(1 · 2 · 3)(ν + 1)(ν + 2)(ν + 3)

· · ·

c2k =
(−1)kc0

22kk!(ν + 1)(ν + 2) · · · (ν + k)
.

Use a Gamma function defined by

Γ(x+ 1) = xΓ(x), Γ(1) = 1.

We can easily see the following relation holds :

Γ(ν + k + 1) = (ν + k)Γ(ν + k)

= (ν + k)(ν + k − 1) · · · (ν + 1)Γ(ν + 1).
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If k is positive integer it holds that

Γ(k + 1) = k!.

Since c0 is arb. we let

c0 =
1

2νΓ(ν + 1)

so that we have

c2k =
(−1)k

22k+νk!Γ(ν + k + 1)
.

The solution y =
∞
∑

n=0
c2nx

2n+ν can be written as

Jν(x) = xν
∞
∑

k=0

(−1)kx2k

22k+νk!Γ(ν + k + 1)
=

∞
∑

k=0

(−1)k

k!Γ(ν + k + 1)

(x

2

)2k+ν
.

When r = −ν, the solution is

J−ν(x) = x−ν
∞
∑

k=0

(−1)k

22k−νk!Γ(−ν + k + 1)

(x

2

)2k
=

∞
∑

k=0

(−1)k

k!Γ(−ν + k + 1)

(x

2

)2k−ν
.

These Jν , J−ν are called Bessel’s function of the first kind of order ν and
−ν.

Remark 5.3.1. (1) If ν = 0 these two functions are the same.

(2) If ν > 0 and the difference ν − (−ν) = 2ν is not a positive integer then by
case I above, Jν , J−ν are linearly independent and the gen. solution is

y(x) = c1Jν(x) + c2J−ν(x).

(3) The case when ν is a half of odd integer, ν = 1
2 ,

3
2 ,

5
2 , · · · , ν − (−ν) = 2ν is

an odd integer. In this case the two solutions are still linearly independent
because the first terms of two solutions are xν , x−ν resp.

(4) The case when ν is an integer, then J−ν(x) = (−1)νJν(x).

Example 5.3.2. The gen. solution of the Bessel’s equation x2y′′ + xy′ + (x2 −
1
4)y = 0 is

y(x) = c1J 1
2
(x) + c2J− 1

2
(x).
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Figure 5.1: Bessel function of the first kind for J0, J1, J2, · · ·

Bessel function of the second kind

If ν is not an integer, the function

Yν(x) =
1

sin νx
[Jν(x) cos νπ − J−ν(x)] (5.17)

is a linearly independent solution of Bessel’s equation. Hence the general solution
is given by

y(x) = c1Jν(x) + c2Yν(x).

Surprisingly this form of general solution also work when ν is an integer.
Define for integer m,

Ym(x) = lim
ν→m

Yν(x). (5.18)

Yν is called the Bessel function of the second kind of order ν.

A summary for Bessel equation

For any value ν the general solution of the Bessel equation

x2y′′ + xy′ + (x2 − ν2)y = 0, ν ≥ 0 (5.19)
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Figure 5.2: Bessel function of the second kind for n = 0, 1, 2, · · ·

is given by

y = c1Jν(x) + c2Yν(x). (5.20)

Example 5.3.3. The gen. solution of the Bessel’s equation x2y′′ + xy′ + (x2 −
16)y = 0 is

y(x) = c1J4(x) + c2Y4(x).

DE. that can be solved in terms of Bessel functions

Consider the following DE:

x2y′′ + xy′ + (α2x2 − ν2)y = 0, ν > 0. (5.21)

By change of variable t = αx, α > 0, we see

dy

dx
=

dy

dt

dt

dx
= α

dy

dt
,

d2y

dx2
=

d

dt

dy

dx

dt

dx
= α2 d

2y

dt2
.

Thus the Bessel equation becomes

(

t

α

)2

α2 d
2y

dt2
+

(

t

α

)

α
dy

dt
+(t2− ν2)y = 0 ⇒ t2y′′+ ty′+(t2− ν2)y = 0, ν > 0.

(5.22)
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The solution is now known as

y(t) = c1Jν(t) + c2Yν(t).

Substitution t = αx gives

y(x) = c1Jν(αx) + c2Yν(αx).

This equation is called the parametric Bessel equation of order ν.

Theorem 5.3.4. We have the following

(1) For m = 0, 1, 2, · · · , J−m(x) = (−1)mJm(x).

(2) Jm(−x) = (−1)mJm(x).

(3) Jm(0) = 0 if m > 0 and J0(0) = 1.

(4) limx→0+ Ym(x) = −∞.

5.3.2 Legendre Equation

The following type of DE. is called the Legendre’s equation.

(1− x2)y′′ − 2xy′ + n(n+ 1)y = 0, n real (5.23)

The solution of this equation is called the Legendre function. Let

y =
∞
∑

k=0

ckx
k (5.24)

and substitute into (5.23). With α = n(n+ 1) we have

(1− x2)

∞
∑

k=2

k(k − 1)ckx
k−2 − 2x

∞
∑

k=1

kckx
k−1 + α

∞
∑

k=0

ckx
k

=

∞
∑

k=2

k(k − 1)ckx
k−2 −

∞
∑

k=2

k(k − 1)ckx
k − 2

∞
∑

k=1

kckx
k + α

∞
∑

k=0

ckx
k = 0

and with shift of index we have

∞
∑

k=0

(k + 2)(k + 1)ck+2x
k −

∞
∑

k=2

k(k − 1)ckx
k − 2

∞
∑

k=1

kckx
k + α

∞
∑

k=0

ckx
k = 0.

Now
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(1) Coeff. of 1 : 2c2 + n(n+ 1)c0 = 0

(2) Coeff. of x : 6c3 + [−2 + n(n+ 1)]c1 = 0

(3) Coeff. of xk :

(k + 2)(k + 1)ck+2 + [−k(k − 1)− 2k + n(n+ 1)]ck = 0.

Thus

ck+2 = −(n− k)(n + k + 1)

(k + 2)(k + 1)
ck, k = 0, 1, · · · , (5.25)

where c0, c1 are arbitrary. For k = 0, 1, 2, · · · we see

c2 = −n(n+ 1)

2!
c0

c3 = −(n− 1)(n + 2)

3!
c1

c4 = −(n− 2)(n + 3)

4 · 3 c2 =
(n− 2)n(n + 1)(n+ 3)

4!
c0

c5 = −(n− 3)(n + 4)

5 · 4 c3 =
(n− 3)(n − 1)(n + 2)(n + 4)

5!
c1

· · · · · ·

Set c0 = 1 and collect even number terms

y1(x) = 1− n(n+ 1)

2!
x2 +

(n − 2)n(n + 1)(n + 3)

4!
x4 + · · · (5.26)

a1 = 1 and collect odd number terms

y2(x) = x− (n− 1)(n + 2)

3!
x3 +

(n− 3)(n − 1)(n+ 2)(n + 4)

5!
x5 − · · · (5.27)

Here y1, y2 are independent and interval of convergence is |x| < 1. Thus the
general solution of (5.23) is given by

y(x) = c1y1(x) + c1y2(x).

Note that if n is even integer then the series for y1 terminates (hence becomes a
polynomial) and if n is odd integer then the series for y2 terminates.

Legendre Polynomials

A special case of Legendre function when n is a natural number: If k = n in
(5.25) then cn+2 = 0, cn+4 = 0, cn+6 = 0, · · · . If n is even y2(x) is a polyn. of
degree n and if n is odd then y1(x) is a polyn. of degree n. These are Legendre
polynomials.



Chapter 10

System of Linear Differential
Equations

10.1 Theory of Linear System

More generally, we consider the first order system of linear differential equation
in n-unknowns given by

x′1 = a11(t)x1 + · · · a1n(t)xn + f1(t)
x′2 = a21(t)x1 + · · · a2n(t)xn + f2(t)
· · · · ·

x′n = an1(t)x1 + · · · ann(t)xn + fn(t)

(10.1)

In matrix form (10.1) becomes

x′ = A(t)x+ f , (10.2)

where

x =







x1
...
xn






, x′ =







x′1(t)
...

x′n(t)






, A(t) =











a11(t) a12(t) · · · a1n(t)
a21(t) a22(t) · · · a2n(t)

...
...

an1(t) an2(t) · · · ann(t)











, f =







f1(t)
...

fn(t)
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Linear dependence/independence

Given a set of solution vectors

x(1) =







x11
...

xn1






,x(2) =







x12
...

xn2






, · · · ,x(n) =







x1n
...

xnn






,

the Wronskian W is defined as

W (x(1), · · · ,x(n)) =

∣

∣

∣

∣

∣

∣

∣

x11(t) · · · x1n(t)
... · · · ...

xn1(t) · · · xnn(t)

∣

∣

∣

∣

∣

∣

∣

. (10.3)

Theorem 10.1.1. [Criterion for linear independence] If x(1), · · · ,x(n) are solu-
tions of (??) then the set of solution vectors are linearly independent if and only
if

W (x(1), · · · ,x(n)) 6= 0. (10.4)

for every t in the interval.

Theorem 10.1.2. [Superposition principle] If x(1),x(2), · · · ,x(n) are the solu-
tions of (??) then for any constants c1, c2, · · · , cn the linear combination c1x

(1)

+ c2x
(2) + · · ·+ cnx

(n) is also a solution of (??).

Definition 10.1.3. Any set x(1), · · · ,x(n) of n linearly independent solution
vectors is said to be fundamental set of solutions of (??).

Nonhomogeneous System

The general solution of (??) is given by

x = xc + xp,

where xc = c1x
(1)+ · · ·+cnx

(n) is the general solution of associated homogeneous
system.

10.2 Homogeneous Linear System with constant co-
efficients

We will see the solution is generally given in this form when the matrix A has
constant coefficients.
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Eigenvalues and Eigenvectors

Given n× n matrix A consider the DE

x′ = Ax. (10.5)

For a vector k ∈ R
n we assume

x = kert (10.6)

and substitute into (10.5) we obtain

rkert = Akert.

we obtain
Ak = rk .

From this we get
det(A− rI) = 0. (10.7)

10.2.1 Real and distinct

When the eigenvalues of A are real and distinct, then general solution is given by

x(t) = c1k
(1)er1t + c2k

(2)er2t + · · ·+ c3k
(n)ernt.

Example 10.2.1. Find the general solution of

x′ =





1 1 2
1 2 1
2 1 1



x.

The characteristic equation is

(A− rI)k =





1− r 1 2
1 2− r 1
2 1 1− r









k1
k2
k3



 = 0. (10.8)

|A− rI| =

∣

∣

∣

∣

∣

∣

1− r 1 2
1 2− r 1
2 1 1− r

∣

∣

∣

∣

∣

∣

= −r3 + 4r2 + r − 4 = −(r − 4)(r − 1)(r + 1) = 0.

So r1 = 4, r2 = 1, r3 = −1.
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(1) r = 4 :




−3 1 2
1 −2 1
2 1 −3









k1
k2
k3



 = 0. (10.9)

−3k1 +k2 +2k3 = 0
k1 −2k2 +k3 = 0

2k1 +k2 −3k3 = 0.

Choose k3 = 1 so that

−3k1 +k2 = −2
k1 −2k2 = −1
2k1 +k2 = 3

from which we obtain k1 = 1, k2 = 1, i.e.,

x(1) =





1
1
1



 e4t.

(2) r = 1 :




0 1 2
1 1 1
2 1 0









k1
k2
k3



 = 0. (10.10)

k2 +2k3 = 0
k1 +k2 +k3 = 0
2k1 +k2 = 0.

Choose k1 = 1 so that
k2 +2k3 = 0
k2 +k3 = −1
k2 = −2

from which k2 = −2, k3 = 1, i.e.,

x(2) =





1
−2
1



 et.

(3) r = −1 :




2 1 2
1 3 1
2 1 2









k1
k2
k3



 = 0. (10.11)
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2k1 +k2 +2k3 = 0
k1 +3k2 +k3 = 0
2k1 +k2 +2k3 = 0.

Choose k3 = 1 then
2k1 +k2 = −2
k1 +3k2 = −1

2k1 +k2 = −2

from which k1 = −1, k2 = 0, i.e.,

x(3) =





−1
0
1



 e−t.

Hence the general solution is

x = c1





1
1
1



 e4t + c2





1
−2
1



 et + c3





−1
0
1



 e−t.

Remark 10.2.2. In this example A is symmetric, in which case it is known
that there always exist n linearly independent vectors. So finding the solution is
simple.

Phase portrait or Phase plane

Example 10.2.3.

x′ =

(

2 3
2 1

)

x.

Sol. The characteristic equation is

|A− rI| =
∣

∣

∣

∣

2− r 3
2 1− r

∣

∣

∣

∣

= (r + 1)(r − 4) = 0, r1 = −1, r2 = 4.

For r = −1 the eigenvector is k1 = (1,−1)T . For r = 4 the eigenvector is
k2 = (3, 2)T . So the solution of DE. is

x = c1

(

1
−1

)

e−t + c2

(

3
2

)

e4t.

If we eliminate parameter t and get relation between x and y, (use various con-
stants) then we get certain relations. For example, if c1 = 1, c2 = 0, we get x(t) =
e−t, y(t) = −e−t, hence y = −x. If c1 = 0, c2 = 1, we get x(t) = 3e4t, y(t) = 2e4t

and hence y = 2
3x. These solutions corresponds to the two blue lines.
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10.2.2 Repeated eigenvalues of multiplicity m

Assume r is a repeated eigenvalue of multiplicity m. There are two cases:

• There exists m linearly independent eigenvectors. In this case, the m-
independent solutions are given by

c1k
(1)er1t + · · ·+ cmk(m)ermt

• There exists only one linearly independent eigenvector k(1) corresponding
to the eigenvalue r. In this case, the m-linearly independent solutions are
given by (Solve the system in this order)

x1 = k(1)er1t

x2 = k(1)ter1t + k(2)er1t

x2 = k(1) t
2

2!
er1t + k(2)ter1t + k(3)er1t

= · · ·

Vectors k(1),k(2) through k(m) are obtained by substituting these expres-
sions into the D.E.

Less than m - Linearly independent eigenvectors - Second solution

When r is a multiple eigenvalue of multiplicity 2 and if there is only one eigen-
vector corresponding to it then the first solution is given by as before,

x(1) = kert, (10.12)

where k satisfies

(A− rI)k = 0. (10.13)

The second solution is

x(2) = ktert + pert, (10.14)

where the vector p can be found by

(A− rI)p = k. (10.15)

The final solution is

x = c1ke
rt + c2(kte

rt + pert).
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Example 10.2.4. Find the general solution of

x′ =

(

3 −1
1 5

)

x. (10.16)

Sol. The characteristic equation is

(

3− r −1
1 5− r

)(

k1
k2

)

=

(

0
0

)

. (10.17)

|A− rI| =
∣

∣

∣

∣

3− r −1
1 5− r

∣

∣

∣

∣

= (r − 4)2 = 0.

So r = r1 = r2 = 4 and the equation to for the eigenvectors is:

−k1 −k2 = 0
k1 +k2 = 0.

Solving it, we get k1 = 1, k2 = −1. Hence we have only one linearly indepen-
dent vector:

k =

(

1
−1

)

from which we get one solution:

x(1) =

(

1
−1

)

e4t.

We need to find another linearly independent solution. Recall scalar case, we
tried: x(t) = c1e

rt + c2te
rt. So we may try a solution like kte4t, but this is not

enough! We have to add a term corresponding to the derivative of kte4t. Thus
try

x(2) = kte4t + pe4t . (10.18)

Substitute this into the DE., we get

(A− 4I)p = k (10.19)

(

−1 −1
1 1

)(

p1
p2

)

=

(

1
−1

)

. (10.20)

So we obtain p1 + p2 = −1. Set η1 = k then p2 = −1− k and we obtain

p =

(

k
−1− k

)

=

(

0
−1

)

+ k

(

1
−1

)

.
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Since the second term (in red) is absorbed into k (so into the first solution x(1)),
we can set

x(2) =

(

1
−1

)

te4t +

(

0
−1

)

e4t.

So the general solution is

x(t) = c1

(

1
−1

)

e4t + c2

[(

1
−1

)

te4t +

(

0
−1

)

e4t
]

Example 10.2.5. Find the general solution of

x′ =

(

3 −18
2 −9

)

x. (10.21)

Sol. The characteristic equation is (3 − r)(−9− r) + 36 = (r + 3)2 = 0. The
eigenvector are found from

(

6 −18
2 −6

)(

k1
k2

)

=

(

0
0

)

. (10.22)

We get one eigenvector k =

(

3
1

)

. Hence x(1) = c1

(

3
1

)

e−3t. For the second

solution, we set
x(2) = kte−3t + pe−3t. (10.23)

Substitute into DE., we see

(k(1− 3t)− 3p)e−3t = (Akt+Ap)e−3t.

Comparing, we get

(A+ 3I)k = 0, (A+ 3I)p = k = (3, 1)T .

(A+ 3I)p = k ⇒
(

6 −18
2 −6

)(

p1
p2

)

=

(

3
1

)

. (10.24)

So 2p1 − 6p2 = 1. We have has many solutions. Set p2 free so that
(

3p2 +
1
2

p2

)

=

(

1
2
0

)

+ p2

(

3
1

)

.

As before, we can set p2 = 0 to get p =

(

1
2
0

)

, thus

x(2) = kte−3t + pe−3t =

(

3
1

)

te−3t +

(

1
2
0

)

e−3t.
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Hence the final solution is

x = c1

(

3
1

)

e−3t + c2

[(

3
1

)

te−3t +

(

1
2
0

)

e−3t

]

.

10.2.3 Complex roots

Assume the characteristic equation of

x′ = Ax (10.25)

has two complex conjugate roots r1 = λ+ iµ, r2 = λ− iµ with the corresponding
eigenvectors k(1) and k(2). The solution in this case is

c1x
(1) + c2x

(2) = c1k
(1)er1t + c2k

(2)er2t,

Since A is real, the eigenvectors corresponding to r1, r2 are two complex conju-
gates vectors k(1) and k(2) = k̄(1). Set k(1) = a+ ib,k(2) = a− ib.

we have
u = x

(1)+x
(2)

2 = eλt(a cosµt− b sinµt)

v = x
(1)−x

(2)

2i = eλt(b cosµt+ a sinµt)

So we may write

x = c1u+ c2v = c1e
λt(a cosµt− b sinµt) + c2e

λt(a sinµt+ b cosµt),

where a is the real part and b is the imaginary part of k(1) respectively.

Example 10.2.6. Solve x′ =

(

1 3
−3 1

)

x.

Solution. The characteristic equation is

|A− rI| =
∣

∣

∣

∣

1− r 3
−3 1− r

∣

∣

∣

∣

= r2 − 2r + 10 = 0

from which we obtain r = 1± 3i. When r1 = 1 + 3i

(

−3i 3
−3 −3i

)(

k1
k2

)

=

(

0
0

)

. (10.26)

We can choose eigenvectors

k(1) =

(

1
i

)

(10.27)
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and the second vector is k(2) = k(1) =

(

1
−i

)

. Hence

x(1) =

(

1
i

)

e(1+3i)t, x(2) =

(

1
−i

)

e(1−3i)t

or

u =
x(1) + x(2)

2
= et

(

cos 3t
− sin 3t

)

, v =
x(1) − x(2)

2i
= et

(

sin 3t
cos 3t

)

Thus the general solution is

x(t) = c1e
t

(

cos 3t
− sin 3t

)

+ c2e
t

(

sin 3t
cos 3t

)

10.3 Diagonalization

10.4 Nonhomogeneous Linear Systems

We now study how to solve nonhomogeneous linear system of DE

x′ = Ax+ f(t). (10.28)

As in the case of single DE. we separate the homogeneous case x′ = Ax and the
solution will be given by

x = xh + xp,

where xh is the solution of the homogeneous problem and xp is a particular
solution of the nonhomogeneous problem.

10.4.1 Method of Undetermined Coefficients

This works only when the coefficients of A are constant case, and right hand side
terms are constants, polynomials, exponential functions, sines, cosines
or finite linear combinations of such functions!

Example 10.4.1 (nonconstant rhs). Solve x′ =

(

6 1
4 3

)

x+

(

6t
−10t+ 4

)

.

Eigenvalues are r1 = 2, r2 = 7 and the eigenvectors are x1 =

(

1
−4

)

, x2 =
(

1
1

)

. Hence the complementary solution is

xc = c1

(

1
−4

)

e2t + c2

(

1
1

)

e7t.
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For a particular solution, let

xp =

(

a2
b2

)

t+

(

a1
b1

)

and substitute into the DE and find the numbers a1, b1, a2, b2.

(

a2
b2

)

=

(

6 1
4 3

)[(

a2
b2

)

t+

(

a1
b1

)]

+

(

6
−10

)

t+

(

0
4

)

(

0
0

)

=

(

(6a2 + b2 + 6)t+ 6a1 + b1 − a2
(4a2 + 3b2 − 10)t + 4a1 + 3b1 − b2 + 4

)

Hence
(

6a2 + b2 + 6 = 0
4a2 + 3b2 − 10 = 0

)

and

(

6a1 + b1 − a2 = 0
4a1 + 3b1 − b2 + 4 = 0

)

Solving first set of eqs we get a2 = −2, b2 = 6. We then substitute it into the
second set of eqs to get a1 = −4

7 , b1 = 10
7 . Therefore

xp =

(

−2
6

)

t+

(

−4
7

10
7

)

.

and the general solution of DE is

x = c1

(

1
−4

)

e2t + c2

(

1
1

)

e7t +

(

−2
6

)

t+

(

−4
7

10
7

)

.

10.4.2 Variation of Parameters

A Fundamental matrix - Homogeneous system

If x1, · · · ,xn are fundamental set of solutions of homog. system x′ = Ax, then
the general solution of homog. system is given by x = c1x1 + c2x2 + · · · + cnxn,
or in matrix form

x = Φ(t)c, (10.29)

where c = (c1, c2, · · · , cn)T , and Φ(t) is the matrix whose columns are vectors
xi, i = 1, 2, · · · , n:

Φ(t) =











x11 x12 · · · x1n
x21 x22 · · · x2n
...

...
xn1 xn2 · · · xnn











called a fundamental matrix.
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Variation of Parameters - Nonhomogeneous system

To find a particular solution we may try xp = Φ(t)u(t) and substitute into

x′ = Ax+ f . (10.30)

Taking derivative we obtain

x′
p = Φ(t)u′(t) +Φ′(t)u(t). (10.31)

Substitute it into (10.30)

Φ(t)u′(t) +Φ′(t)u(t) = AΦ(t)u(t) + f(t). (10.32)

Since Φ′(t) = AΦ(t) we have

Φ(t)u′(t) = f(t). (10.33)

u′(t) = Φ(t)−1f(t) ⇒ u(t) =

∫

Φ(t)−1f(t)dt.

Since xp = Φ(t)u(t) we have

xp(t) = Φ(t)

∫

Φ(t)−1f(t)dt. (10.34)

Example 10.4.2. Solve the DE.

x =

(

−3 1
2 −4

)

x+

(

3t
e−t

)

. (10.35)

Eigenvectors corresponding to r = −2, r = −5 are
(

1
1

)

and

(

1
−2

)

.

The solution of homog. system is

c1

(

1
1

)

e−2t + c2

(

1
−2

)

e−5t.

The fundamental matrix is

Φ(t) =

(

e−2t e−5t

e−2t −2e−5t

)

and Φ(t)−1 =

(

2
3e

2t 1
3e

2t

1
3e

5t −1
3e

5t

)

.

Hence by (10.34)

xp(t) = Φ(t)

∫

Φ(t)−1f(t) =

(

e−2t e−5t

e−2t −2e−5t

)∫ (2
3e

2t 1
3e

2t

1
3e

5t −1
3e

5t

)(

3t
e−t

)

d

Hence the solution of the nonhomg system is

x(t) = c1

(

1
1

)

e−2t + c2

(

1
−2

)

e−5t +

(

6
5t− 27

50 +
1
4e

−t

3
5t− 21

50 +
1
2e

−t

)
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Initial Value Problems

x(t) = Φ(t)c+Φ(t)

∫ t

t0

Φ(s)−1f(s)ds. (10.36)

If the solution is to satisfy IC x(t0) = x0 then we must have x(t0) = Φ(t0)c, so

c = Φ(t0)
−1x(t0).

Hence the solution of IVP is

x(t) = Φ(t)Φ(t0)
−1x(t0) +Φ(t)

∫ t

t0

Φ(s)−1f(s)ds. (10.37)

10.4.3 Nonhomogeneous Problem by Diagonalization

Derivatives of eAt

The derivatives of a matrix function can be computed as

d

dt
eAt = AeAt. (10.38)

e
At is a fundamental matrix

Any solution of homog. system x′ = Ax is given by eAtC for some vector C.

Nonhomog. systems

In view of techniques studied for scalar equations we can see the solution of
x′ = Ax+ F(t) is given by

x = xc + xp = eAtC+ eAt

∫ t

t0

e−AsF(s)ds. (10.39)

Laplace transform

Let us recall X(t) = eAt is the fundamental set of sols. satisfying the IC, i.e.

X′ = AX, X(0) = I. (10.40)

Use Laplace transform. If x(s) = L{X(t)} = L{eAt}, then we see

sx(s)−X(0) = Ax(s) or (sI −A)x(s) = I.
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We have used small capital for transformed function and large capital for original
function. Multiplying its inverse, we see

x(s) = (sI −A)−1I = (sI −A)−1.

In other words, L{eAt} = (sI −A)−1 or

eAt = L−1{(sI −A)−1}. (10.41)

Compare this with the formula:

eat = L−1{ 1

(s− a)
}.

This result can be used to find a matrix exponential.

Example 10.4.3. Use Laplace Transform to find eAt when

A =

(

1 −1
2 −2

)

. (10.42)

In general a direction evaluation of eAt is very complicated. However, if we use
Laplace Transform of eAt and do some algebraic manipulation on s-space, then
use inverse Laplace Transform, we sometimes compute eAt easily.
Sol. First recall L{eat} = 1

s−a and so

L{eAt} = (sI −A)−1 or eAt = L−1{(sI −A)−1}. (10.43)

We will compute (sI −A)−1 first. Since

sI −A =

(

s− 1 1
−2 s+ 2

)

,

we have

(sI −A)−1 =

(

s− 1 1
−2 s+ 2

)−1

=

(

s+2
s(s+1)

−1
s(s+1)

2
s(s+1)

s−1
s(s+1)

)

.

Decomposing the entries we see

(sI −A)−1 =

(2
s − 1

s+1 −1
s +

1
s+1

2
s − 2

s+1 −1
s +

2
s+1

)

.

Taking the inverse Laplace Transform, we get by (10.43)

eAt =

(

2− e−t −1 + e−t

2− 2e−t −1 + 2e−t

)

.
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Chapter 11

System of Nonlinear Diff.
Equation

11.1 Autonomous System, critical points, stability

Autonomous System

The DE. of the form
dx1
dt = g1(x1, x2, · · · , xn)
dx2
dt = g2(x1, x2, · · · , xn)
...

...
dxn

dt = gn(x1, x2, · · · , xn)

(11.1)

is called autonomous. Notice that the equation does not have t explicitly.

Second Order DE as a System

A second order autonomous DE can be written as a system of first order au-
tonomous DE. For example, given

x′′ = F (x, x′), (11.2)

we let dx
dt = y. Then y′ = x′′ and hence

dx
dt = y
dy
dt = F (x, y).

This is a system of first order autonomous system in x, y.

29
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x = 2 cos 2t + 2 sin 2t, y = − sin 2t

(1)

(2, 0)

x = 2et cos 2t, y = −et sin 2t
(2)

Figure 11.1: Example 11.1.4

Matrix form of autonomous system

If we use the vector (matrix) notation, we have X′(t) = g(X) where

X′(t) =







x1(t)
...

xn(t)






, g(X) =







g1(x1, · · · , xn)
...

gn(x1, · · · , xn)






.

Example 11.1.1 (Periodic solutions-Check the Fig. 11.1). Solve

(1)

{

x′ = 2x+ 8y
y′ = −x− 2y

and (2)

{

x′ = x+ 2y
y′ = −1

2x+ y

In each case sketch the graph when x(0) = (2, 0).

Sol. (1). In Section 10.2, we have seen the solution is

x = c1(2 cos 2t− 2 sin 2t) + c2(2 cos 2t+ 2 sin 2t)
y = c1(− cos 2t− 2)− c2 sin 2t.

with IC, we get
x = 2cos 2t+ 2 sin 2t, y = − sin 2t.

These are clearly periodic. We can eliminate t and get (x+2y
2 )2 + y2 = 1. Figure

11.1 (1)

Changing to Polar coordinates

r2 = x2 + y2, θ = tan−1 y
x ,

∂r
∂x = x

r
∂r
∂y = y

r .

∂θ

∂x
=

−y

x2 + y2
=

−y

r2
,
∂θ

∂x
=

x

x2 + y2
=

x

r2
.
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Example 11.1.2. Find the solution of

dr
dt = 0.5(3 − r)
dθ
dt = 1.

(11.3)

with IC. x(0) = (0, 1), and with IC. x(0) = (3, 0).

Sol.
r = 3 + c1e

−0.5t, θ = t+ c2.

With IC. x(0) = (0, 1),

x(0) = (3 + c1e
−0.5t) cos(t+ c2) = 0

y(0) = (3 + c1e
−0.5t) sin(t+ c2) = 1.

x(0) = (3 + c1) cos(c2) = 0
y(0) = (3 + c1) sin(c2) = 1.

Hence we get c1 = −2, c2 = π/2. The solution is the spiral r = 3 −
2e−0.5(θ−π/2). As θ → ∞ the path approaches a circle. Fig ??
Next, with IC. x(0) = (3, 0) r = 3, θ = 0 when t = 0. Thus c1 = c2 = 0.
Thus

r = 3, θ = t ⇒ x = 3cos t, y = 3 sin t.

11.2 Stability of Linear System

We again consider a plane autonomous DE.

dx
dt = P (x, y)
dy
dt = Q(x, y).

(11.4)

Recall the definition of a critical points: P (x, y) = Q(x, y) = 0.

Stability Analysis

For the stability of the generally nonlinear system (11.4), we first study the
stability of the linear system.

x′ = Ax or

{ dx
dt = ax+ by
dy
dt = cx+ dy

, (11.5)

The behavior depends on the eigenvalues.
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x

y

X

Y

Figure 11.2: Example ??, Saddle

Case I: Real and distinct eigenvalues; τ 2 − 4∆ > 0.

Consider
{ dx

dt = ax+ by
dy
dt = cx+ dy.

(11.6)

The solution of (11.7) is given by the following form:

x(t) = c1ξe
λ1t + c2ηe

λ2t. (11.7)

This is again classified as follows:

• Stable node if both λ1, λ2 are negative (τ2 − 4∆ > 0, τ < 0, and ∆ > 0)

• Unstable node if both λ1, λ2 are positive (τ
2−4∆ > 0, τ > 0, and ∆ > 0)

• Saddle if λ1λ2 < 0 (τ2 − 4∆ > 0, and ∆ < 0) Saddle is unstable.

Example 11.2.1 (Real and distinct; different sign → Saddle).

∣

∣

∣

∣

1− λ 2
3 2− λ

∣

∣

∣

∣

= λ2 − 3λ− 4 = 0 ⇒ λ = 4,−1.

We have charact. equation

λ2 − τλ+∆ = 0.

∆ = ad− bc = −4 and trace τ = a+ d = 3.
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For λ = 4, ξ = (2, 3)T , and for λ = −1, η = (1,−1)T . Thus the solution is

(

x
y

)

= c1

(

2
3

)

e4t + c2

(

1
−1

)

e−t

(1) If c1 = 0 we see y = −x.

(2) If c2 = 0 we see y = 3
2x.

(3) If c1 6= 0, c2 6= 0.

Treat (1,−1) direction as if X-axis, (2, 3) direction as if Y -axis. Then we
have Y = c

X4 , a hyperbola.

It is a saddle.

Example 11.2.2 (Real and distinct ; same sign → Nodes).

Y X

x

y

Figure 11.3: Example 11.2.2, Node

Sol. The critical point is (0, 0). Charac. eq. is

∣

∣

∣

∣

−2− λ 1
1 −2− λ

∣

∣

∣

∣

= 0 ⇒ λ2 + 4λ+ 3 = 0, λ = −1,−3.

and eigenvectors are

ξ1 =

(

1
1

)

, ξ2 =

(

1
−1

)

.
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The general solution is

(

x
y

)

= c1

(

1
1

)

e−t + c2

(

1
−1

)

e−3t.

Repeated real eigenvalues (τ 2 − 4∆ = 0; same sign → Nodes)

Degenerate nodes:

(1) Two linearly independent eigenvectors

X(t) = c1ξe
λ1t + c2ηe

λ1t.

If λ1 < 0 then it is stable, otherwise unstable.

(2) Single linearly independent eigenvector

X(t) = c1ξe
λ1t + c2(ξte

λ1t + ηeλ1t),

where (A− λ1I)η = ξ. If λ1 < 0 then it is stable. It can be written as

X(t) = teλ1t
[

c2ξ +
c1
t
ξ +

c2
t
η
]

.

As t → ∞ the solution approaches the direction of ξ. (Only one direction.)
So it is called Degenerate stable node.

Complex Eigenvalues (τ 2 − 4∆ < 0; → Spiral)

Example 11.2.3.

{

x′ = αx+ βy
y′ = −βx+ αy (α, β real, β > 0)

(11.8)

Eigenvalues are α± iβ. Hence this is a spiral.

If α = 0 we have a periodic solution. More generally, when the eigenvalues
are λ = α± iβ with corresponding eigenvectors a1 ± ia2, then

x1(t) = (a1 cos βt− a2 sinβt)e
αt, x2(t) = (a2 cos βt+ a1 sin βt)e

αt.

So

x(t) = (c11 cos βt+ c12 sinβt)e
αt, y(t) = (c21 cosβt+ c22 sin βt)e

αt.
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x

y

Figure 11.4: spiral

Stability: Linear case
Roots of Char. eq. Critical point(Linear) Stability (Linear)

r1 > r2 > 0 node unstable

r1 < r2 < 0 node stable, attr.

r1 · r2 < 0 saddle unstable

r1 = r2 < 0 node stable, attr.

r1 = r2 > 0 node unstable

α± iβ, α > 0 spiral unstable

α± iβ, α < 0 spiral stable, attr.

α = 0, ±iβ center stable

Classification of Critical Points- Linear Case

x′ = ax+ by
y′ = cx+ dy.

(11.9)

Its charact. equation is

λ2 − (a+ d)λ+ ad− bc = λ2 − τλ+∆ = 0.

Let τ = a+ d, and the determinant ∆ be ad− bc. We classify the critical points
according to τ2 − 4∆:

(1) Real roots of same sign ∆ > 0, τ2 − 4∆ ≥ 0 : node



36 CHAPTER 11. SYSTEM OF NONLINEAR DIFF. EQUATION

Stable, center unstable

Figure 11.5: Stable, unstable critical points

(2) Real roots of opposite sign ∆ < 0 : saddle

(3) Complex roots τ 6= 0, τ2 − 4∆ < 0 : spiral

(4) Pure imaginary roots τ = 0, ∆ > 0 : center

11.3 Nonlinear system-Linearization

An autonomous nonlinear system is given as
{ dx

dt = F (x, y)
dy
dt = G(x, y).

(11.10)

The zeros of F (x, y) = G(x, y) = 0 are called critical points.

Definition 11.3.1 (stable critical point). Let x1 be a critical point of a au-
tonomous system. It is called a stable critical point if for any radius ρ > 0
there exists a radius r > 0 such that if the initial position satisfies |x0 − x1| < r,
then the corresponding solution x(t) satisfies |x(t) − x1| < ρ for all t > 0. If, in
addition, the solution satisfies limt→∞ x(t) = x1 whenever |x0 − x1| < r then xl

is called an asymptotically stable critical point.
Otherwise, a critical point x1 is called an unstable critical point. (see the

book for more precise defintion)

Example 11.3.2.
dr
dt = 0.05r(3 − r)
dθ
dt = −1.

(11.11)

Show that (0, 0) is an unstable critical point. Solving the system directly in
terms of r and θ,

dr

r(3− r)
= 0.05dt ⇒ ln

r

3− r
= 0.15t + c ⇒ r

3− r
= Ce0.15t
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r =
3

1 + c0e−0.15t
.

With IC, r(0) = r0, we get c0 = (3 − r0)/r0. As t → ∞ we see r(t) → 0.
r = 3− 2e−0.5(θ−π/2). As θ → ∞ the path approaches a circle of radius 3. Hence
the circle is stable.(limit cycle)

Linearization

Consider the following nonlinear system of DE.

{

x′ = P (x, y)
y′ = Q(x, y)

or x′ = g(x), (11.12)

where P (x, y), Q(x, y) are C2-functions. Assume x1 = (x0, y0) is a critical point.
We linearize this using the Taylor expansion at (x0, y0).

The vector form of the system of equation is

x′ = g(x) = g(x1) +A(x− x1) + o(‖x‖) ≈ A(x− x1),

where A is the Jacobian matrix

A =

(

Px Py

Qx Qy

)∣

∣

∣

∣

(x0,y0)

The system (with x1 = 0) the system x′ = Ax is called the linearization of
(11.15).

Theorem 11.3.3. Assume x1 is a critical point of the plane autonomous system
x′ = g(x).

(1) If the eigenvalues of A = g′(x1) has negative real part, then x1 is an asymp-
totically stable critical point.

(2) If A = g′(x1) has an eigenvalue with positive real part, then x1 is an un-
stable critical point.

Example 11.3.4. (a) Classify the critical points of

{

x′ = x2 + y2 − 6
y′ = x2 − y.

The critical points are (
√
2, 2) and (−

√
2, 2).

g′(x) =

(

2x 2y
2x −1

)
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and

A1 =

(

2
√
2 4

2
√
2 −1

)

, A2 =

(

−2
√
2 4

−2
√
2 −1

)

(1) A1. ∆ = (−2
√
2− 8

√
2) < 0, τ > 0. So A1 has a positive eigenvalue and a

negative eigenvalue, so unstable(saddle).

(2) A2. ∆ = (2
√
2 + 8

√
2) > 0, τ < 0. So both eigenvalues are negative real,

so stable.

Nonlinear case - from linearization

τ

∆

τ 2 = 4∆

τ 2
− 4∆ < 0

? ? ? ???? ?
?

?

?

?

?

?

?

?

?

?

degen. stable node degen. unstable node

unstable spiral

unstable node

stable spiral

stable node

saddle

b

Figure 11.6: Classification- nonlinear case

Theorem 11.3.5. Stability: nonlinear system
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char. value point (linear) Stab.(linear) point(nonlin) Stab.(nonlin)

r1 > r2 > 0 node unstable node unstable

r1 < r2 < 0 node stable, attr. node stable, attr.

r1 · r2 < 0 saddle unstable saddle unstable

r1 = r2 < 0 node stable, attr. node stable, attr.

r1 = r2 > 0 node unstable node unstable

α± iβ, α > 0 spiral unstable spiral unstable

α± iβ, α < 0 spiral stable, attr. spiral stable, attr.

α = 0,±iβ center stable center, spiral indeterm.

Sol. (0, 0) is a critical point. Differentiate F,G, we get x′ = Ax where

A = DF (0, 0) =

(

1 + 2x 4y
2 + y 1 + x

)

(0,0)

=

(

1 0
2 1

)

Example 11.3.6 (Soft Spring). mx′′ + kx+ k1x
3 = 0, k = 1 > 0, k1 = −1 < 0.

m = 1. By introducing y = x′, we obtain a system that can be written as

{

x′ = y
y′ = x3 − x.

Find and classify critical points.

Sol. We see the critical points are (0, 0), (1, 0) and (−1, 0). Differentiating g,
we get x′ = Ax where

A1 = Dg(0, 0) =

(

0 1
−1 0

)

, A2 = Dg(1, 0) = Dg(−1, 0) =

(

0 1
2 0

)

The eigenvalues of A1 are ±i. So we are not sure about the stability.
The eigenvalues of A2 are ±

√
2. So saddle.

The phase plane method

Example 11.3.7. Consider the D.E.

{

x′ = y2

y′ = x2.
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x′ = y2, y′ = x2 Soft spring

Figure 11.7: Phase Plane of Example 8, 9

The critical point is (0, 0). Since the determinant of linearization

g′ =

(

0 2y
2x 0

)

is zero (on the border line), the nature of the critical point is in doubt. Instead,
solving

dy

dx
=

x2

y2
,

we get y3 = x3+ c or y = 3
√
x3 + c. If X(0) = (0, y0) then y3 = x3+ y30 . From the

Figure 11.7, we conclude it is unstable.

Example 11.3.8 (Phase plane analysis of Soft Spring). Investigate the behavior
of critical point of

mx′′ + x− x3 = 0.

Use x′ = y, y′ = (x3 − x)/m to get

{

x′ = y

y′ = x3−x
m .

Set m = 1. The critical point is (0, 0).

dy

dx
=

x3 − x

y
. (11.13)

Separation of var.
y2

2
=

x4

4
− x2

2
+ c.
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y2 =
(x2 − 1)2

2
+ c0.

If X(0) = (x0, 0) then

0 =
(x20 − 1)2

2
+ c0 ⇒ c0 = −(x20 − 1)2

2
.

So

y2 =
(x2 − 1)2

2
− (x20 − 1)2

2
=

1

2
[(x2 − 1)− (x20 − 1)][(x2 − 1) + (x20 − 1)]

=
1

2
(x2 − x20)(x

2 − 2 + x20).

Investigate near the point (0, 0). Set y = 0, we get x = ±x0 and the right hand
side is positive only when −x0 < x < x0. The origin is center. Note that when
x0 = 1,

√
2y2 = (x2 − 1). it is a quadratic poly. for x ≥ 1. See Figure 11.7.

Remark 11.3.9. We only checked when the initial point x0 is close to the origin.

11.4 Autonomous system as mathematical models

θ

θ̇

π
−π 3π−3π

Figure 11.8: Phase plane of Pendulum

Example 11.4.1. [Nonlinear pendulum - no friction] Recall the movement
of the Pendulum in section 1.

θ′′ +
g

ℓ
sin θ = 0. (11.14)
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Let x = θ, y = x′. Then the movement of the pendulum is described by

{

x′ = y
y′ = − g

ℓ sinx.

Solution. The critical points are (kπ, 0), k = ±1,±2, · · · .

(1) Let k = (2n + 1). Then the critical point is ((2n + 1)π, 0). Linearizing at
((2n + 1)π, 0),

A =

(

0 1
− g

ℓ cos x 0

)

((2n+1)π,0)

=

(

0 1
g
ℓ 0

)

.

Since ∆ = −g/ℓ < 0 the eigenvalue values are distinct real. Hence critical
points are saddle. Original nonlinear system is also saddle.

(2) Let k = 2n. Then the critical point is (2nπ, 0). Linearizing at (2nπ, 0),

A =

(

0 1
− g

ℓ cos x 0

)

(2nπ,0)

=

(

0 1
− g

ℓ 0

)

.

The eigenvalues of A are pure imaginary, so it is a center. By Theorem
11.3.8 the original point is either center or spiral. However, the stability
behavior of nonlinear system is doubtful. So try

dy

dx
= −g

ℓ

sinx

y
.

Solving, we get

y2 =
2g

ℓ
cos x+ c.

With I.C x(0) = (x0, 0), we have

y2 =
2g

ℓ
(cos x− cos x0).

For this to have solutions, we need cosx− cos x0 ≥ 0. Near the origin, we
require |x| < x0. This sol is periodic.

Example 11.4.2. [Periodic solution of pendulum- with initial angular
velocity] We assume the pendulum at θ = 0 is given an initial angular velocity
ω0 rad/s. Determine under what condition the motion is periodic.
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Sol. Use IC. x(0) = (0, ω0) to y2 = 2g
ℓ cos x+ c to get

ω2
0 =

2g

ℓ
+ c

Hence

y2 =
2g

ℓ
(cos x− 1 +

ℓ

2g
ω2
0).

Example 11.4.3. [Pendulum- with friction] We may assume the friction is
proportional to the velocity, i.e., the friction is cℓθ′. Hence we have

mℓ2θ′′ + cℓθ′ +mgℓ sin θ = 0.

Dividing by mℓ2

θ′′ + aθ′ + b sin θ = 0, a =
c

mℓ
, b =

g

ℓ
.

Let x = θ, y = θ′. Then we get

{

x′ = y
y′ = −b sinx− ay.

(11.15)

Its critical points are (nπ, 0), n = ±1,±2, · · · . Linearizing at (0, 0) we get

x′ = Ax =

(

0 1
−b −a

)

x.

The char. values are r1, r2 =
−a±

√
a2−4b
2 . According to location of (a, b) we have

(1) a2 − 4b > 0: char. values are distinct negative real: So the critical points
are stable and node. Same for the original problem.

(2) a2 − 4b = 0: char. values are double negative real:So the critical points are
stable and node. The original has node or spiral(stable).

(3) a2 − 4b < 0: char. values are complex with negative real part. So the
critical points are stable. Same for the original problem.

At (2mπ, 0),m = 1, 2, 3, · · · we can show the same behavior. Now look at ((2m−
1)π, 0),m = ±1,±2, · · · . Linearizing, we get A =

(

0 1
b −a

)

. In this case the

char. values are −a±
√
a2+4b
2 . In this case, it is a saddle. Same for the original

problem.
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b
P

W = mg

mg sin θ
z = f(x)

θ

Figure 11.9: Sliding bead and critical points

Nonlinear Oscillation: Sliding bead

Suppose a bead is sliding along a wire forming a curve described by the function
z = f(x).

Example 11.4.4. [Sliding bead]

Fx = −mg sin θ cos θ = −mg tan θ cos2 θ = −mg
f ′(x)

1 + [f ′(x)]2
.

Assume a damping force −βx′ (proportional to velocity). Then the movement of
the sliding bead is described by

mx′′ = −mg
f ′(x)

1 + [f ′(x)]2
− βx′. (11.16)

Hence we have
{

x′ = y

y′ = −g f ′(x)
1+[f ′(x)]2 − β

my.

The critical points x1 = (x1, y1) satisfy y1 = 0, f ′(x1) = 0 (local extreme point of
z = f(x)). After some algebra, we can see

g′(x1) =

(

0 1
−gf ′′(x1) −β/m

)

.

So τ = −β/m, ∆ = gf ′′(x1), τ
2 − 4∆ = β2/m2 − 4gf ′′(x1).

(1) If f ′′(x1) < 0, it is rel. max. as a point on the graph of f(x) and since
∆ = gf ′′(x1) < 0, it is a saddle.

(2) If f ′′(x1) > 0, then it is a rel. min. Assume β > 0. If β2/m2 − 4gf ′′(x1) >
0, then τ2 − 4∆ = β2/m2 − 4gf ′′(x1) > 0, then we have two negative
eigenvalues. Hence stable node (overdamped). If β2/m2 − 4gf ′′(x1) < 0,
then τ2 − 4∆ = β2/m2 − 4gf ′′(x1) < 0, complex eigenvalues with negative
real part. Hence stable spiral (underdamped).
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(3) If f ′′(x1) > 0 and β = 0 (undamped), we have pure imaginary eigenvalues,
so no info for nonlinear problem. However, we can use phase plane method
to show it has a periodic solution. Thus the critical point is a center.

Lotka-Volterra Predator prey Model

x′ = −ax+ bxy = x(−a+ by)

y′ = −cxy + dy = y(−cx+ d),

Now consider the critical point (d/c, a/b). A2 has pure imaginary eigenvalues
±
√
adi. It may be a center, but need more investigation. Consider

dy

dx
=

y(−cx+ d)

x(−a+ by)
.

Thus
∫ −a+ by

y
dy =

∫ −cx+ d

x
dx

so
−a ln y + by = −cx+ d ln x+ c1, or (xde−cx)(yae−by) = c0.

We let F (x) = xde−cx and G(x) = xae−bx.

Lotka-Volterra Competition Model

Two (or more) species compete for resources(food, light, etc.)(predator) of ecosys-
tem.: Investigate coexistence! If x is the number of predator and y is the
number of prey, then

x′ =
r1
K1

x(K1 − x− α12y)

y′ =
r2
K2

y(K2 − y − α21x)

Note that the critical points are at

(0, 0), (K1, 0), (0,K2) and (x̂, ŷ) when α12α21 6= 0.

(1) If there were no second species (y = 0), then x′ = r1/K1(K1 − x) so the
first species grow logistically and approach the steady state(section 2)

(2) If there were no first species (x = 0), then y′ = r2/K2(K2−y) so the second
species show similar behavior.
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(3) The origin (0, 0) is unstable.

(4) At (x̂, ŷ), we see τ2 −∆ > 0, τ < 0 and ∆ = (1− α12α21)x̂ŷ
r1r2
K1K2

. Thus

(a) If α12α21 < 1 then ∆ > 0 and we have stable node (coexistence)

(b) If α12α21 > 1 then ∆ < 0 and we have saddle

Example 11.4.5. Classify the critical points.

x′ = 0.004x(50 − x− 0.75y)

y′ = 0.001y(100 − y − 3.0x).

Critical points are at (0, 0), (50, 0), (0, 100) and (20, 40). We consider (20, 40).
Since α12α21 = 2.25 > 1, we have saddle.

Or you may directly compute g′((20, 40)).

A1 = g′((0, 0)) =

(

0.2 0
0 0.1

)

, A3 = g′((50, 0)) =

(

−0.2 −0.15
0 −0.05

)

A3 = g′((20, 40)) =

(

−0.08 −0.12
−0.06 −0.04

)

, A4 = g′((0, 100)) =

(

−0.1 0
−0.3 −0.1

)

Since ∆ of A3 is negative we have saddle.

11.5 Periodic Solutions, Limit Cycles, and Global Sta-

bility

We will use the vector field, V(x, y) = (P (x, y), Q(x, y)) to study the stability of
DE.

Negative Criteria

Theorem 11.5.1 (Cycles and Critical Points). If a plane autonomous system
has a periodic solution x(t) in a simply connected region R, then the system has
at least one critical point inside the simple closed curve C. If there is a single
critical point inside C, the critical point cannot be a saddle point.

Corollary 11.5.2. If a simply connected region R contains no critical point or
a single saddle point, then there is no periodic solution in R.

Example 11.5.3. Show the system

x′ = xy

y′ = −1− x2 − y2
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has no periodic solutions.
Sol. From xy = 0 we get x = 0 or y = 0. if x = 0, then from the second eq.

−1 − x2 − y2 = 0, thus no critical points. By the Corollary there is no periodic
solutions. The same argument shows when y = 0, there is no periodic solutions.

Example 11.5.4 (Lotka Volterra Competition Model). The Lotka Volterra com-
petition model

x′ = 0.004x(50 − x− 0.75y)

y′ = 0.001y(100 − y − 3.0x)

has no periodic solutions in the first quadrant.
Sol. Critical points are at (0, 0), (50, 0), (0, 100) and (20, 40). Among them

only (20, 40) is in the first quadrant and it is a saddle. Hence by the above
corollary, it has no periodic solutions,

Theorem 11.5.5 (Bendixon Negative Criteria). If divV = ∂P
∂x + ∂Q

∂y does not
change sign in a simply connected region R, then the system has no periodic
solutions.

Example 11.5.6 (Bendixon Negative Criteria). Investigate periodic solutions of
the following system.

(a)
x′ = x+ 2y + 4x3 − y2

y′ = −x+ 2y + yx2 + y3
(b)

x′ = y + x(2− x2 − y2)
y′ = −x+ y(2− x2 − y2)

Sol. (a) divV = ∂P
∂x + ∂Q

∂y = 1 + 12x2 + 2 + x2 + 3y2 ≥ 3, so there are no
periodic solutions.

(b) divV = 4− 4(x2 + y2). So if R is the interior of unit circle x2 + y2 < 1,
there are no periodic solutions in the disk.

Also, if R is any simply connected region outside the disk, there are no periodic
solutions since divV = 4 − 4(x2 + y2) < 0 in R. It follows that if there is a
periodic solution, it must enclose the circle x2 + y2 = 1. In fact, one can check
x(t) = (

√
2 sin t,

√
2 cos t) is a periodic solution.

Example 11.5.7 (Sliding Bead). Sliding Bead in Example before satisfies

mx′′ = −mg
f ′(x)

1 + [f ′(x)]2
− βx′. (11.17)

Show that it has no periodic solutions.
Sol. We change it to have the following system:

{

x′ = y

y′ = −g f ′(x)
1+[f ′(x)]2 − β

my.

divV = ∂P
∂x + ∂Q

∂y = − β
m < 0. Hence there are no periodic solutions.
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As a generalization of above theorem, we have

Theorem 11.5.8 (Dulac Negative Criteria). If δ(x, y) is a C1 function in a

simply connected region and if div (δ(x, y)V) = ∂(δP )
∂x + ∂(δQ)

∂y does not change
sign in a simply connected region R, then the system has no periodic solutions.

Example 11.5.9. Show that the DE

x′′ = x2 + (x′)2 − x− x′ (11.18)

has no periodic solutions.
Sol. We consider the following system:

{

x′ = y
y′ = x2 + y2 − x− y.

If we choose δ(x, y) = eax+by then

∂(δP )

∂x
+

∂(δQ)

∂y
= eax+by(ay + 2y − 1) + eax+byb(x2 + y2 − x− y).

If we set a = −2, b = 0, then ∂(δP )
∂x + ∂(δQ)

∂y = −eax+by < 0. Thus there are no
periodic solutions.

Positive Criteria: Poincaré-Bendixson Theory

Definition 11.5.10 (Invariant region). A region R is called an invariant region
for an autonoumous system if whenever, x0 is in R, the solution x(t) satisfying
x(0) = x0 remains in R.

Theorem 11.5.11 (Normal vectors and invariant regions). If n(x, y) is a normal
vector on the boundary of R pointing inside the region, then R will be an invariant
region, provided V · n(x, y) ≥ 0 for all points (x, y) on the boundary.

Example 11.5.12 (Circular invariant region). Find a circular invariant region
with center (0, 0) of the system

{

x′ = −y − x3

y′ = x− y3.

Sol. For the circle, x2 + y2 = r2, normal vector n = (−2x,−2y) points towards
inside the region.

Since
V · n = (−y − x3, x− y2) · (−2x,−2y) = 2(x4 + y4),

we can conclude that V · n ≥ 0 on the circle x2 + y2 = r2. Therefore by the
Theorem, the circular region x2 + y2 ≤ r2 is an invariant region for the system
for any r > 0.
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Figure 11.10: Type I and type II region for Poincaré-Bendixson Theorem

Example 11.5.13 (Annular Invariant Regions). Find an annular invariant for
the system

{

x′ = x− y − 5x(x2 + y2) + x5

y′ = x+ y − 5x(x2 + y2) + y5.

Sol. The normal vector n1 = (−2x,−2y) points towards inside the circle x2+y2 =
r2 while the normal vector n2 = −n1 is directed towards exterior. We compute

V · n1 = −2(r2 − 5r4 + x6 + y6).

r2 − 5r4 = r2(1− 5r2)
If r = 1, V · n1 = 8 − 2(x6 + y6) ≥ 0, since the maximum of x6 + y6 on the

circle x2 + y2 = 1 is 1. The flow is directed towards the interior of the circular
region.

If r = 1/4, V·n1 ≤ −2(r2−5r4) < 0(Some computations) soV·n2 = −V·n1 >
0. The flow is directed towards the exterior of the circle x2 + y2 = 1/16. So the
annular region 1/16 ≤ x2 + y2 ≤ 1 is an invariant region for the system.

Theorem 11.5.14 (Poincaré-Bendixson - I). Let R be an invariant region for a
plane autonomous system and suppose R has no critical points on its boundary.

(a) If R is a type I region that has a single unstable node or an unstable spiral
point in the interior, then there is at least one periodic solution in R.

(b) If R is a type II region that contains no critical points, then there is at
least one periodic solution in R.

In either case, if x(t) is a nonperiodic solution in R, then x(t) spirals towards
a cycle that is a solution to the system, call ed a limit cycle.

Example 11.5.15 (Existence of a periodic solution). Show the system
{

x′ = −y + x(1− x2 − y2)− y(x2 + y2)
y′ = x+ y(1− x2 − y2) + x(x2 + y2)
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has at least one periodic solution.
Sol. If n1 = (−2x,−2y) is the normal vector, thenV·n1 = −2r2(1−r2).(Need

computations) If we let r = 2 and r = 1/2 then we may conclude that 1/4 ≤
x2 + y2 ≤ 4 is an invariant region for the system. If (x1, y1) is a critical point,
then V · n1 = (0, 0) · n1 = −2r2(1− r2). Therefor r = 0 or r = 1. If r = 0, (0, 0)
is a critical point.

If r = 1, the system becomes −2y = 0, 2x = 0 thus a contradiction. Therefore,
(0, 0) is the only critical point and it is not in R. By (b) of above theorem the
system has at least on periodic solution in R.

Example 11.5.16. Van der Pol’s equation. The following system has a periodic
solution when µ > 0.

y′′ − µ(1− y2)y′ + y = 0. (11.19)

Here µ(1− y2)y′ is a damping term. If |y| > 1, we have positive damping and if

2

-2

2-2
y

v

Figure 11.11: µ = 0.1

|y| < 1, we have negative damping. With the substitution v = y′, y′′ = v dv
dy we

get

v
dv

dy
− µ(1− y2)v + y = 0.

If µ is small we approximate it by v dv
dy + y = 0. So the limit cycle is close to a

circle. But if µ is large, situation changes.
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Figure 11.12: µ = 1.2


